11006 | N95- 16476

1994 Workshop on The Role of Computers in LaRC RE&D
Object Oriented Numerical Computing in C++

John Van Rosendale

Institute for Computer Applications in Science and Engineering
jvrQ@icase.edu

Synopsis

C++ is an efficient object-oriented language of rapidly growing popularity. It can be of real value in a
wide range of disciplines, including numerical computing, where it seems to offer important advantages over
most competing languages.

Object-oriented languages

What exactly is an object-oriented language? The most important defining characteristic is support for
“polymorphic data types.” Procedural languages, like Fortran and C; contain built-in types such as integers,
reals, characters and so on. The integer type, for example, consists of the requisite bits of data, a set of
assoclated operations, +, *, /, ..., and coercions to and from the other built-in types. One can build data
structures of arbitrary complexity in Fortran, but these are not “first class” types, like integers.

For example, one can form a “sparse_matrix” from arrays of integers indexing into arrays of reals. But
Fortran 77 does not let one declare several of these as

sparse_matrix 4,B,C
and then perform operations such as:
A=B+¢C

Languages like Clu and Ada, supporting “abstract data types,” let one do precisely this. One can, for
example, in Ada define a “set_of_words” abstract data type. This would be a user defined type which might
be useful in comnparing documents. Once the type is defined, one can then declare several such sets

set_of_words A,B,C
One can also operate on them just as with the built in types
A :=B .+. C

where .+. might be a user-defined union operation.

OO languages push this concept further, allowing one to define a “set.of_<type T>”, where T can be
any type in the language. This new type, a “set_of_<type T>”, is “first class” in OO languages, one can use
variables of that type exactly like those of the built-in types. To make this clear, types are called “classes”
in the OO world, while values of those types (classes) are called “objects,” though whehter these new terms
do more to clarify or obfuscate is not clear.

To see how OO ideas might be used in numerical computing, it might, for example, be useful to define
a class “mesh_cell” which would be the basic unit of an unstructured mesh. Mesh cells come in a number
of varieties, which can be thought of as subtypes (subclasses) of the type (class) “mesh_cell”, as shown in
Figure .

All mesh cells share certain properties, volume, temperature, pressure etc. declared as part of class
“mesh_cell.” Cubes and tetrahedrons share these properties, but have their own unique properties as well.
They have different numbers of faces and vertices for example.

The ability to allow useful computing on a set of related but not identical user-defined types is the defining
characteristic of OO languages. In the above case, one can make an array of “mesh_cells”, consisting of prisms,
tetrahedrons, and cubes. One can access the volume of any element of this array, since all “mesh_cells”
have volume. To access specialized properties, one may have to select on the particular subclass of each
“mesh_cel]”.

519

mesh_cell

prism tetrahedron cube

Figure 1: Mesh cell type hierarchy

C++ in numerical computing

How useful will C++ be in numerical computing? C++ contains most of the useful new features in Ada
or Fortran 90, and is easily extensible in a number of ways. People around the world are rapidly developing
class libraries for finite element analysis, for sparse matrix arithmetic, and so on. C++ together with a new
class library is essentially a new application-specific language, and one that may have a powerful impact on
a particular subdiscipline. ‘

To see how this could have an impact, one need only realize that there are, for example, at least a dozen
different unstructured grid codes here at Langley, with relatively little code shared between them. Giiven the
appropriate class library supporting unstructured grids, one should be able to prototype new unstructured
grid algorithms much faster, by borrowing large chunks of previously written code. This is the promise of
OO computing in C++. Efficient execution, compatibility with previously written C and Fortran, and the
OO approach are the major advantages to C++.

C++ also has its problems. One is that its syntax and semantics, inherited from C, are needlessly
complex, significantly steeping the learning curve for new programmers. Another problem is that, like Ada
and Fortran 90, C4+ is a large language, full of complexities most programmers will never master. Only
experts will master the full language, with most programmers limping along on their own particular subset.

These problems are real, but clearly not fatal, given the exponential growth of C++. From one perspec-
tive, C+4 is essentially a halfway point between traditional procedural languages, like (! and Fortran, and
“rapid prototyping” languages like Smalltalk. Over the longer term, as computer power increases and our
algorithms become more complex, one expects research numerical computing, like that done at Langley, to
shift in the “rapid prototyping” direction. Use of C'++ is an important step in that direction.

520

Surresurduy pue edusidg ur suorjeorddy Joyndwo)) I0J ajnjrjsuy

npaasedpdal

2IDPUISOY UDA UYO[

AKRY DYOT us suaandwoy) fo 210y oy uo doysyiom Y661

+-+D ul Surndwo)) [ednwn) pajusLiQ 109[qQ

521

(44

An object oriented language is one allowing users to
create a set of related types and then intermix and ma-
nipulate values of these related types.

e Such types are called classes.

e Values of such types are called objects.

Intermixing related user-defined types is called poly-
morphism. Polymorphism, and the things that go with
it, encapsulation, inheritance, and dynamic binding give
OO languages their increased semantic power.

euIs

SOLD

sdoory

SI010Y

[easeJ aAnoelqQ
D 2a1103[q(
[PPTH
SI[9IL,/1M0O
++D

AeHRWS

sadensue] OO UMOUY [[OAA WO

523

pes

Fortran is not OO. Integer variables, for example, have
powertul properties the user cannot duplicate in new

types. There is no way to define a sparse-matrix type,
then do:

sparse_matrix A,B,C

A = B+ C

'109e19d0 UOTUN PBUYED IOSN B ST ‘- 9I0UM

D T+ d =Y
D‘qg‘y spaom~Jo 3es

'od4y SpIOM~JOT)9S,, ® 10 odAy xtrjeurosreds,
® 9JeoId ued ouo ‘epy uy -sedf) meu oulep 09
sIosn mofe sadAy eyep joensqe, Jurproddns seSenSuer

525

97s

Typical class lattice:

window

PN

bordered window slider window

~ 7

bordered_slider window

LTS

What is C4+ ?

o A statically-checked object oriented language down-
ward compatible with C

e Useful on any program with complex data struc-
tures (though originally intended for systems pro-
gramming)

e Potentially useful in scientific programming, since it
is efficient and supports complex data structures well

8¢S

Templates — data abstractions with types as parameters

template<class T>
class stack {

T* v;

T* p;

int sz;

public:
stack (int s){ y = p = new T[sz = s]; }
“stack () { delete[] v; }

void push(T a){ *p++=a; }
T pop(O{ return *--p; }

int size() const { return p-v; }

(Y4

Operator Overloading — the ability to define new uses
for the built-in operator symbols (+ - /! =...)

Example: polygon union
P4 = P1 + P2 + P3
P4 = union(union(P1,P2),P3)
P4 = P1.union(P2.union(P3))

(%

0€s

Using inheritance in numerical codes

cell

prism tetrahedron cube

cell:

- volume

- flow variables
cube:

- 8 vertices

- 6 faces
prism:

- 6 vertices
- 5 faces

Km.lq!] ssepd
JIA[OS JAIJR.II)I

Lreaqn ssep

JIA[OS URWIONY

Axeaqiy ssep
P18 paanjonajsun

:9SNAJ IPO) I0J [RIJUIO]

e __s) uwesdoad
MU
-7

531

(43

Efficiency

e C++ provides much of the semantic power of dynami-
cally typed languages, like Smalltalk, but is much more
efficient.

e C++ code runs about as fast as C or Fortran, if one
avoids polymorphism and abstractions.

o The overhead in using large objects (e.g. a sparse matrix
object) is minor.

e Fine grained objects, such as complex variables, are inef-
ficient and should usually be avoided.

€es

Observations

e Efficiency should be thought of in terms of the entire
programming, debugging, and execution cycle.

e If a language would make programming substantially
easier, there could be such a gain from algorithmic
improvements, that significant run- time 1nefﬁ(:1ency
could be tolerated.

Areaqr ssep

- weJasoad

ALY
Juagi[Pjul

weasoad

Aqeradoadyug

534

Ses

Conclusions

e C++ is an effective OO language, and has become
the defacto standard.

e C++ supports the data structures needed for com-
plex numerical algorithms very well.

o It is efficient, and can be readily intermixed with C,
Fortran and perhaps HPF.

e Developing numerical algorithms in C++ should in-
crease opportunities for code reuse and for sharing
code between programmers.

